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Abstract

The paper presents a cooperative distance learning system based on the emerging paradigm of intelligent
human-computer interaction in which the group of learners are assisted by artificial agents with active role
in the learning process. The tutor in the system may be a human or an artificial agent. The system offers
several learning modalities that combine the traditional style of tutorial learning with the “problem-based”
approach. Cooperative learning is achieved either by interaction between the student and the tutor or
inside the group of learners. The underlying paradigm to support learning activities is computer-supported
cooperative work.
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Introduction

The challenges that face today and tomorrow’s Information Society, make the professional qualification a
variable and not a life-long constant for most individuals. To maintain the aptitude of the labour force in a
competitive and ever changing environment, complex skills have to be transmitted and acquired fast.
Efficiency becomes the basic request of the learning process. One way of achieving it is by combining the
traditional style of tutorial learning with the “learner-centred”, “problem-based” or “creative learning”
approach [1]. The New Information Technologies offer the possibility to develop novel applications and
learning environments that support such an enriched learning style. Computer networks allow learners to
collaborate in problem solving and in developing group reasoning skills, by new means of communication
and access to information.

The paper presents a cooperative distance learning system based on the emerging paradigm of intelligent
human-computer interaction in which the group of learners are assisted by artificial agents [2, 3] with
active role in the learning process. The system comprises a set of tools to assist the learner at several levels
of the knowledge acquisition process. Providing these tools with machine intelligence can bring a new
dimension to the flexibility and adaptability required to actively support the learner. It becomes possible to
develop a personalised model of the trainee, to help understand the connection between theory and
practice, to overcome the barrier between knowing and using, and to relieve the learner of cumbersome
and routine tasks.

Cooperative learning is achieved by interaction either between the student and the tutor/expert or inside
the group of learners. The tutor may be a human or an artificial agent. The learning environment is a
virtual one, in which participants may be located in the same place or geographically far apart,
communicating over the network. The underlying paradigm is the computer-supported cooperative work
(CSCW) that refers to people working together on a product, research area, or scholarly endeavour with
help of computers [4].
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Learning modalities

The system offers several learning modalities that try to combine the traditional style of teaching with the
“problem-based” one, namely: learning by being told, problem solving demonstration, problem solution
analysis, problem solving, and creative learning (Figure 1). The learning by being told modality
corresponds to the on-line presentation of “classical” learning materials, such as course notes or
slide-show, but augmented with student-system interactions and feed-back, to enhance the pedagogical
value of the environment [5]. The material is organised along two conceptual paths: the content path,
which can be explored at compulsory, optional, or advanced presentation level, and the concept path in
which the student is following the presentation and the use of a concept throughout the entire learning
material. Roadmaps are associated to each of the conceptual paths the student may follow, to facilitate the
process of knowledge organisation and concept formation. When following the content path, the student is
presented with some questions or simple exercises, at the end of each chapter or section, to test his/her
progress in understanding the presented knowledge. According to the quality of the answers, the student is
advised to go again through parts of the material or is provided with more examples to clarify the subject.

Figure 1. Learning modalities in the system

The problem solving demonstration modality implies showing how one given problem is solved
individually or collaboratively. The demonstration may be performed by the tutor (human or artificial), by a
student, or by a group of students assisted or not by the tutor. This mode corresponds to taking a
pre-existing solution for a given type of problem, tuning the solution by specifying parameters or features
for the problem instance, applying the solution to solve the problem, and visualising the results. Result
visualisation may be followed by the interpretation of results. The interpretation of results is performed
through the chat facility of the system. The artificial tutor may also give only a limited interpretation,
depending on the problem. The students and the tutor collaboratively participate in setting the parameters
and interpreting the results. Shared visualisation of initial parameter settings and of the results which are
obtained facilitates collaboration in learning.

The problem solution analysis modality corresponds to the analysis of a solution proposed either by the
tutor or by a student. This involves the critical analysis of the decisions that were taken and explaining the
rationale behind these decisions. Currently, the proposed solutions may be selected from an existing
repertoire of generic problem solutions tailored according to tutor or student options. This third modality
comprises problem centred demonstration followed by the collaborative analysis and explanation of the
proposed solution and of the obtained results. The problem is presented in terms of: problem specification,
main steps that lead to the solution, selected input values, results, the set of underlying principles used for
solving the problem, and the set of concepts useful for understanding the problem solution. The students
have to select the principles that are actually relevant for solving the problem and the concepts that support
the problem solving. The human or artificial tutor may be addressed in case of uncertainty by the hint or
explanation facilities of this learning modality. To support the analysis, the tutor or the learners in the
system may invoke a search facility to perform search of relevant information.

The problem solving modality implies the student being in control and solving the problem either
individually, or in cooperation with the tutor, and/or with other students. The student actually builds the
solution of the problem by selecting and instantiating the problem solving steps from an existing repertoire
of solution chunks associated to each problem prototype in the system. The creative problem solving is a
learning modality in which the student builds the solution from scratch, discovers new ways to solve a
problem, new explanations for a problem solution, and/or new causal links between concepts in the system
and problem solution. The first three modalities are mainly aimed to achieve knowledge transfer, while the
last two are conceived primarily for skill development. The level of learner’s active participation to problem
solving increases gradually from the first to the last modality, as depicted in Figure 1.

The human tutor may select demonstrations, analyses, problem solving or creative learning experiences
built by the students or by himself with the help of the students and record them in the system. In this way,
a learner may be individually engaged in a learning modality of his choice or may investigate previous
learning experiences performed by the tutor with peer learners, at a time of his convenience.
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System architecture

The architecture of the system is a multi-agent one, human and artificial agents collaborating with each
other to achieve the learning task. There are several agents in the system, as shown in Figure 2. A learner in
the environment is endowed with his own digital Personal Agent (PerA). The agent is permanently present
in the system to assist the learner, to monitor learner actions, and to assure coordination and
communication with the other agents in the system. At the same time, PerA is responsible for developing
the learner profile. Each PerA has an associated KB to store specific knowledge on the learner he serves.
The tutor has also an associated digital assistant, namely the Tutor Assistant Agent (TAssistA). The
TAssistA performs mainly the same actions as a PerA, but with different aims, as will be detailed in the next
section. It is also responsible for eliciting knowledge based on tutor actions while interacting with the
system.

The system comprises an artificial tutor, namely the Tutor Agent (TutA) that tries to partially replace the
human one by providing help and (limited) assistance to learners while they are not assisted by the human
tutor. The TutA has its own KB in which it stores access knowledge to learning experiences, pedagogical
knowledge to guide the learner and knowledge on how to adjust the guiding to the learner profile.

Another agent in the system is the Information Agent (InfoA) which is responsible of retrieving and
filtering information from specified sources that can range from the learning materials available in the
system to the entire Web. The InfoA is called either by the PerA of a student or by the TAssistA  with a
filtering criteria specified by user. The InfoA is using term frequency times inverse document frequency
(TFIDF) to perform information retrieving. Extra details on how the InfoA is built are outside the scope of
this paper.

The Problem Solving Knowledge Base (PSKB) contains the learning materials and experiences necessary to
support the learning modalities described in the previous section. Except for the tutorial material used in
the learning by being told modality, all knowledge is organised around problem prototypes with associated
specifications, generic solutions, and problem solution chunks. A set of underlying principles and
supporting concepts is maintained in the PSKB so as to index problem solution analysis. The concepts in
the KB are the same with those used to browse the tutorial material along the concept path, in the learning
by being told modality.

The interaction among the users (learners and human tutor) of the system may be achieved either by direct
communication through the network (chat-like facility) or by means of the associated Personal Agents or
the Assistant Agent. The users are communicating with their own agents by means of a menu-driven
approach or by a standard formal language for specific requests. The learners have access to the PSKB only
to retrieve learning materials and only by means of their PerAs. The human tutor may also use its TAssistA
to access this knowledge base, but has also direct access to the PSKB to create or update its content, or to
add learning experiences produced by students while using the creative learning modality.
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Figure 2. The architecture of the cooperative learning system

 

Agent specification

Tutor agent

The KB of the Tutor Agent contains: (a) knowledge to access the PSKB -- i.e., the model of the domain, the
domain taxonomy and a description of problem prototypes; (b) methodological knowledge -- teaching
strategies and modalities, and problem solving methods; (c) knowledge on how to adapt guiding to
learner's profile ---- a standard model of the learner needs and a customised model. TutA has several
components (Figure 3) to achieve the following actions: manage the TutA KB based on (a), select from
PSKB relevant information to help the student based on (b), assist the learner according to the learner's
profile, either standard or customised as transmitted by a PerA, based on (c). To perform its functions, the
TutA interacts with the human tutor -- who can directly update the TutA KB, with the learners' PerA -- to
get learners demands, and with TAssistA -- to get customised learners' profiles, when prompted by the
tutor, or to get knowledge extracted by the TAssistA from the human tutor --  to update its KB.
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Figure 3. Tutor Agent architecture and functionality

 

Tutor assistant agent

The Tutor Assistant Agent (Figure 4) monitors tutor actions and helps him in managing the PSKB to
extract the learning experiences related to a specified learning modality. Based on the tutor actions while
interacting with the students in the system, the TAssistA creates a training history, extracts training and
pedagogical knowledge, and stores it in its KB. Knowledge contained in large sets of examples can be first
extracted in sub-symbolic form by using the examples to train an artificial neural network (ANN), then
elicited in symbolic form, usually as crisp or fuzzy rules, by means of specific Knowledge Eliciting (KE)
methods [6, 7, 8]. When explicitly asked for, TAssistA can also retrieve a learner's profile for the tutor
and/or for the TutA, by making a request for this profile to the PerA of the specified learner. To this end,
the TAssistA enters in interaction with the human to monitor him and obtain his request, with the TutA to
send the selected learning profile, and with the PerAs to get assistance requests and profiles. It also
accesses and updates its own KB and updates the PSKB with elicited knowledge from the tutor, if
instructed accordingly.

European Journal of Open, Distance and E-Learning http://www.eurodl.org/?article=28

5 of 8



Figure 4. Tutor Assistant Agent architecture and functionality

 

Learner personal agent

The Learner Personal Agent (Figure 5) manages the access to the PSKB to retrieve for the student learning
materials and experiences and monitors learner actions. Based on this monitoring, it creates the learning
history and, based on this history, develops the learner profile. The learner’s history includes the numbers,
dates, and modes (synchronous or asynchronous) of the student sessions with the system, the level of
achievement, the selected modalities of learning during each session, peer learners in the group while
engaged in collaborative learning, and how often the learner asked for assistance from the artificial tutor.
Many other factual details of the learning sessions can be recorded in a learner's history, if found useful to
define relevant features of the learner. The learning profile of a student is a qualitative synthesis of these
quantitative elements, as indicated in the next section. The PerA enters in interaction with the learner it
monitors -- to get help requests that it passes over either to the tutor, or to the TutA -- and accesses and
updates its KB.

Figure 5. Learner Personal Agent architecture and functionality

 

Steps towards a user comprehensive model

Building any model starts with feature definition, selection and extraction. As well known, this involves an
iterative refinement process, in order to achieve an efficiently working model, able to make predictions that
meet reality, at least statistically.

There exists no purely empirical approach to modelling. Even the definition of attributes/features and the
selection of the relevant ones in a given context are actually theory driven, explicitly or not. A prototype
model of the learner can be used as a starting point that actually encodes some available general theoretical
knowledge in the field of learning. Because of the large variability in human personality and in human
behaviour, and because the traits that are essential in various contexts are not the same, such a prototype
model can not be used directly in practice, without the penalty of being perceived as being rigid and biased.
The model has to be customised by using empirical data - sets of examples collected for the given user,
while interacting with the system. If the features used to parameterize the initial model do not allow
capturing specific detailed behaviour, i.e., if the simple tuning of parameters can not adapt the model to
properly depict the user's profile,  new features have to be extracted from the empirical data and added to
the model. This means, in fact, to elaborate a new refined theory that covers the specific instance of the
given user. The number of features to describe a system, especially as complex as a human learner, is
unbounded in principle, so that a reductionist approach is mandatory.

The available collection of examples is never large enough to cover  all the possible classes in an unbiased
manner, to avoid spurious correlation when elaborating a model. Small sets of exceptions may be poorly
represented or even ignored. There is no systematic way to empirically identify the domains of the
attribute/feature space that are not properly represented in a given example set. The underlying theory
helps eliminate irrelevant features that adversely affect the adaptation of the model by parameter tuning,
guides the scanning of the input space and the selection of relevant examples, and gives confidence in the
solutions produced. On the other hand, a purely theoretical approach may be brittle, i.e., can yield
dramatically incorrect results for special cases (exceptions), while scores of common instances that fall in
the limits of the theory validity domain are treated correctly (abrupt degradation). Exhaustive theories may
become intractable to use, so that the domain of validity has always to be restricted, and a compromise
scope - accuracy has to be considered.
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The combined use of theoretical knowledge and experimental results can offer the sought for solution, by
allowing for incomplete and/or incorrect theoretic knowledge and for incomplete or noisy experimental
data. Such a system has the inherent ability to recover from errors, and to keep the model in the range of an
acceptable approximation. This is the reason the user model being developed uses a hybrid approach based
both on artificial intelligence (AI) symbolic representation of knowledge and on neural network (NN)
sub-symbolic representation. NNs have a very good ability to represent "empirical knowledge", but the
information is expressed in sub-symbolic form - i.e., in the structure, weights and biases of the trained
network, not directly readable for the human user. Thus, an NN behaves almost like a "black box",
providing no explanation to justify its decisions taken in various instances. This forbids the direct usage of
NNs in learning/teaching and makes it difficult to verify and debug software that includes NN components.
On the other hand, the extraction of the knowledge contained in an NN allows the portability of the
information to other systems, in both symbolic (AI) and sub-symbolic (NN) forms, as well as towards
human users. AI and NN approaches are complementary in many aspects, so they can mutually offset
weaknesses and alleviate inherent problems. Thus, there are good reasons to consider that a hybrid
aproach,  able to exploit simultaneously theoretical and empirical data, is more efficient to build a fault
tolerant and adaptive model and could help discover salient features in the input data, whose importance
could otherwise be over-looked.

The system is being elaborated in successive steps. In a first phase, the system operates on the basis of
statistics about which buttons were selected by the lerner when using the system, in which order and about
which error messages have been generated. The system is trained to use this input to offer advice in the
form of access to some additional data and information, additional reading, or even to recommend or
trigger an interaction with the human tutor -- if atypical behaviour recorded. In a subsequent phase, the
system uses (always incomplete, but gradually evolving) error, special interest, and preference databases,
structured in a more elaborate way on the basis of the input from the human tutor. The output helps
identifying some profile of the user, defined roughly by the set of classes the user belongs to. This
influences the future interaction of the system with the user, for instance changing the type and level of
exercises on a course presented to the user.

In a next step, the system will have the possibility to include some voluntary feedback from the learners,
that will be offered or used consequently for all the other learners, to help conveying original ideas and
generate groups of interest.  As we see it at the moment, such a system is a useful assistant and not a
replacement of the human tutor. On the other hand, it can be  considered that some sort of replacement
takes place: the work done traditionally by two or three tutors could be accomplished in this approach by
only one assisted tutor. This is actually an increase of "productivity".

 

Conclusions

The basic contribution of this research is twofold: the identification of several learning modalities that
combine traditional teaching with “problem-centred” learning to better motivate the student and to
increase the efficiency of the learning process, and the conception of a collaborative distance learning
system in which human and artificial agents collaborating together to achieve the learning task. Among the
agents in the system, the Tutor Agent tries to partially replace the human teacher to synchronously assist
the students in the learning endeavour at the time of their convenience.

The development of the presented learning system is a collaborative effort to develop a novel intelligent
virtual environment for learning at “Politehnica” University of Bucharest. The system is written in Java and
is currently under development, several separate components being already functional. To test the system,
we are concurrently developing learning materials on the following subjects: sorting algorithms, resolution
theorem proving, neural networks, advanced digital signal processing.

The distributed solution has the advantage of creating an open and distance learning environment to be
joined by any interested learner. The system is an effective response to the increased demand for
cooperation and learning in today's open environments, both academic and economic, and to the necessity
of developing effective learning tools that can be smoothly integrated in the professional development
process but also with company work.

Care is taken to prevent such an approach to generate an "elitist" system. The system is designed to
enhance the specific features of each user, without increasing the differences from one user to the other in
what concerns the level of understanding or the ability to creatively use the acquired knowledge.
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